Code: 20EC3501

III B.Tech - I Semester - Regular Examinations - DECEMBER 2022

DIGITAL COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks	
UNIT-I						
1	a)	Compare PCM and DM systems applicable to	L2	CO1	7 M	
		digital communication, consider bandwidth				
		required also.				
	b)	Discuss briefly about Digital line encoding,	L2	CO1	7 M	
		describe any four factors that should be				
		considered for selecting line encoding format.				
OR						
2	a)	Explain the Delta Modulation, PCM &	L2	CO1	7 M	
		Differential PCM, and summarize the				
		differences.				
	b)	(i) Explain Companding with example.	L2	CO1	7 M	
		(ii) Draw and explain Single-Channel				
		Simplex PCM transmission system.				
UNIT-II						
3	a)	Discuss why the matched filter is called as an	L2	CO1	7 M	
		optimum filter, and list its important				
		applications.				
	b)	For a fixed bit-error probability, Interpret	L3	CO1	7 M	
		the bandwidth, efficiencies and the average				
		transmitted power requirements of BPSK and				
		QPSK schemes.				

		OR			
4	a)	Explain the importance of digital modulation techniques. Distinguish Non Coherent FSK Detector and Coherent FSK Detector.	L2	CO2	7 M
	b)		L2	CO1	7 M
		UNIT-III			
5	a)	Illustrate various aspects of Frequency Hopping Spread Spectrum applicable to digital communications.	L3	CO2	7 M
	b)	importance of the Direct Sequence Spread Spectrum for improving efficient data communication.	L2	CO1	7 M
	1	OR	Т	Г	
6	a)	Illustrate Slow and Fast Frequency Hopping Spread spectrum Techniques applicable for data communications.	L3	CO2	7 M
	b)	i) Discuss the applications of SpreadSpectrum Techniques.ii) Illustrate about Jamming Margin.	L3	CO2	7 M
		UNIT-IV			
7	a)		L3	CO2	7 M

	b)	Interpret the below for efficient data transfer	L3	CO3	7 M	
		(i) Shannon-Fano coding.				
		(ii) Huffman coding.				
		(iii) Lempel-Ziv Coding.				
		OR				
8	a)	(i) Illustrate the Channel capacity of a discrete	L3	CO3	7 M	
		channel.				
		(ii) With help of an example describe				
		Shannon Fano coding.				
	b)	(i) Examine the Properties of Entropy and	L3	CO3	7 M	
		discuss about Information rate & Source				
		Coding Theorem.				
		(ii) Explain briefly about Lossless Data				
		Compression.				
		Explain about Lempel-Ziv Coding to				
		improve bandwidth & efficiency of				
		communication systems.				
	T	UNIT-V	1			
9	a)	Discuss the applications of convolution codes	L2	CO4	7 M	
		and explain briefly about Encoding of				
		convolutional code with constraint length 2 by				
		using State diagram, Code Tree and Trellis				
		Diagrams.				
	b)	Consider a (7,4) linear block code with	L4	CO4	7 M	
		generator matrix is given by				
		$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$				
		$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$				
		[UUUI UII]				
		i) Generate parity check matrix.ii) Compute minimum distance of the code.				
OR						

10	a)	Draw the circuit diagram of $(7,4)$ cyclic encoder with generator polynomial $g(p) = 1+p+p^3$. Describe the encoding process of cyclic code and explain it's working.	L3	CO4	7 M
	b)	Consider the convolutional encoder shown in figure Adder1 Adder1 Multiplexer Output Codeword Sequence. X Find code word corresponding to the information sequence (11101) using time domain approach.	L4	CO4	7 M